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Note 

Finite-Sized Fluid Particle 
in a Nonuniform Moving Grid 

I. INTRODUCTION 

The particle-in-cell (PIC) method, which is known as the mixed Eulerian- 
Lagrangian scheme, has been applied successfully to solve a wide variety of problems 
where the fluid distortions are large. But the use of the scheme is limited to an 
idealized situation, because the use of particles proouces nonphysical fluctuations of 
fluid quantities, and makes great demands on computer memory capacity and 
calculation time. Furthermore, we sometimes need to describe a large density 
variation, e.g., the variation of several orders from a solid-state region to a rarefied- 
gas region. Because the minimum density is determined by the density shared with 
one particle, some automated particle adjusting technique must be introduced. 

In this paper, we present a PIC method of a new type, in which an area-weighting 
technique and a nonuniformly spaced moving grid are employed, respectively, for the 
suppression of nonphysical fluctuations and for the description of large density 
variations with few particles. In addition, the reduction of numerical viscosity is 
discussed. 

II. NUMERICAL ALGORITHM 

For a simple description of the basic scheme, the following one-fluid compressible 
equations are used: 

and 

8P z+v *pv=o, 

F + vpvv = -vp, 

$$+v .pvl=--pv .v, 

(1) 

(2) 

(3) 

where p, p, v, and Z denote the pressure, density, velocity, and specific internal energy, 
respectively. The PIC method employs Lagrangian fluid particles to represent mass, 
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FIG. 1. Schematics of a finite-sized particle’s location (0) in cells ( x ) (a) before, and (b) after the 
particle moves. In this example, the summation of the areas B, and B, corresponds to the area A,. 

momentum, and energy convections through Eulerian grids of cells. In Harlow’s PIC 
method [ 1, 21, the particle has the memory only for its own mass and positions, but 
momentum and energy are attached to the particle from the cell only when the 
particle crosses the cell boundary. A nearest-grid-point procedure like this suffers 
from a large fluctuation with few particles. The area-weighting technique [3] can 
reduce the effect, but requires some modification before it is applied to the fluid PIC 
method. The full particle method [4], which means that all quantities are kept in the 
particle’s memory, may use the area-weighting technique without special care, but the 
multi-streaming problem is still a subject of considerable debate. 

Here we present another approach to the PIC method. Let us imagine that a 
particle center locates at the place denoted by a filled circle in Fig. la. In our scheme, 
the particle has memories for its own mass, positions, and internal energy, but in 
order to avoid the multi-streaming problem, momentum is attached to the particle 
only when it moves. The area-weighting procedure places a square of the cell size 
around each particle, and the fractional area belonging to each neighbor cell 
determines the fraction of the physical quantities of the particle and cell. The mass 
and internal energy of a cell are calculated from the fractional areas of particles 
belonging to the cell. The new internal energy of a particle is corrected by artificial 
relaxation between the energy of the particle and the area-weighted energy of 
corresponding cells. Then the numerical thermal diffusion can be successfully reduced 
without the multi-temperature problem [4, 51. On the other hand, the momentum is 
not memorized, and hence the averaging causes a large diffusion. An essential point 
of our procedure is that the particle preserve the memory of the cell boundary lines in 
Fig. la when it moves. The memorized boundary lines of the particle after it moves 
are schematically depicted in Fig. lb. The momentum and kinetic energy of four cells 
in Fig. la are memorized on the particle and are redistributed to new cells in Fig. lb. 
In the example depicted in the figure, this procedure can be expressed as 
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The modified area-weighting procedure removes the zeroth-order diffusion, but the 
first-order diffusion, called the numerical viscosity, still remains. The effect is usually 
not crucial, except for the case where the fluid velocity relative to the Eulerian grid is 
greater than the local sound speed, and the velocity gradient is relatively large. 

There are several methods to reduce the numerical viscosity. One may, for 
example, subtract it in the form of a finite difference [l] or assume a velocity 
distribution within a particle for more correct convection. The former is hard to 
extend to multi-dimensional simulations, while the latter is more flexible because it 
tries to remove the origin of the numerical viscosity. The simplest distribution is 

U(r,z)=l(Ui+l,j+l-Ui+l,j )(2z - az) + Ui+ ,,j}(2r - dr) 

- {(ui,j+l - ui,j)(2z-6z)+ Ui,j}(2r-6r- l), (5) 

where the particle size is set to unity, and the origin of the (r, z) coordinate system is 
at the bottom left-hand corner of the particle in Fig. la. The momentums of the four 
parts after convection are easily obtained by integrating U(r, z) over each new area in 
Fig. lb. It is easily understood that this procedure also removes the zeroth-order 
diffusion, and hence does not require the complicated procedure given by Eq. (4). All 
these procedures are straightforwardly extended to a nonuniformly spaced grid 
system, where a particle size may be set to the minimum size of the four adjacent 
cells. 

III. NUMERICAL RESULTS 

Let us demonstrate the efficiency of our scheme with typical examples. A first 
example is a one-dimensional adiabatic expansion process. Initially, live particles per 
cell are loaded in 20 grids which are uniformly spaced, and nonuniformly spaced 
grids are placed in a vacuum region. 

FIG. 2. Comparison between the theoretical adiabatic expansion law (-) and simulation results. 
where n , A, and 0 correspond to the schemes given, respectively, by Eq. (4), by Eq. (5) with fixed grid. 
and by Eq. (4) with moving grid. 
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FIG. 3. Sample particle plot at yt = 5 and grid arrangements at yr = 0 and yt = 5. The initial density 
ratio of the two superposed fluids is 5:l. 

FIG. 4. Comparison between the theoretical linear growth (-) and simulation results. Fine 
resolution of initial growth is attained by a moving grid. Simulations corresponding to 0 and A use the 
grid of (parallel to, perpendicular to acceleration) equal to (24, 18) and (24,28). Here the grid is 
constrained to move only in the direction parallel to acceleration. 
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For an ideal fluid, the pressure and density should obey the adiabatic law as shown 
by the solid line in Fig. 2. The result of the scheme given by Eq. (4) is shown by 
squares. Although the large density variation is successfully described with few 
particles, the pressure is appreciably detached from the adiabatic law at lower 
density. The velocity distribution method given by Eq. (5) presents a favourable 
result, as shown by triangles. The full particle method and finite difference 
subtraction method reproduce the same result. We may use a more complicated 
profile than that given by Eq. (5), if improved accuracy is required. 

On the other hand, there exists a more interesting method which employs a moving 
grid. The effect of numerical viscosity becomes relatively smaller than the pressure 
effect when fluid velocity relative to the grid is less than the local sound speed. This 
effect is demonstrated and its result shown by circles in Fig. 2, where each grid is 
forced to move at 80% of the local fluid velocity. The prominent feature of our 
scheme is that the grid can move with almost arbitrary speed without any 
complicated technique, because each particle preserves the memories of physical 
quantities and the grid only plays a temporary role. 

The second example is the Rayleigh-Taylor instability [6]. Because a line grid is 
required for the description of initial linear growth, partially nonuniformly spaced 
grids (24 x 18), as shown in Fig. 3, are preferred. The grids are forced to move in the 
direction parallel to acceleration, so as to be uniformly spaced at the end of 
calculation, that is, at the time when the perturbed region expands over a whole 
system. It is found that the effects of nonuniformly spaced moving grids are small, 
because the similar simulation with uniformly spaced 90 x 18 grids shows the same 
growth. The linear growth rate of the simulation yS is 87% of the theoretical 
prediction yT ; both are shown in Fig. 4. The discrepancy between them comes 
primarily from the coarseness of horizontal grid spacing. Another simulation with a 
24 x 28 grid justifies this expectation, and yS N 0.947, is obtained, as shown in the 
figure. 

IV. SUMMARY 

A PIC method of a new type is developed and shown to be useful for the 
description of large density variation with few particles. Nonphysical noise, numerical 
thermal diffusion, and viscosity are successfully reduced. A nonuniformly spaced 
moving grid system can be used for locally fine resolution of processes. 

The detailed description of the scheme and its application to real situations will 
appear in a forthcoming paper, where the extension to a polar coordinate system will 
also be discussed. 

APPENDIX 

Here we briefly describe the PIC method. Each cycle of calculation is divided into 
two phases, the Eulerian phase and the Lagrangian phase. In the first phase, Eulerian 
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field variables are calculated, neglecting the transport due to fluid motion, that is, the 
second terms of the left-hand sides of Eqs. (l)-(3). In order to conserve the total 
energy even in nonuniform grids, the following finite difference representations in 
two-dimensional plane coordinates are employed: 

ci,j = UY,j - (AtlPF,j Ari)(Pi+ l/z,j -Pi- 1/2,jh 

dt,j = VY,,j - (At/PY,j Azj)(Pi,j+ I/Z -Pi,j- L/Z), 

J,j =IY,j - (At/P~,iAri){(Pu)i+,,,,j - (P4-,,2,jl - (At/PY,jAZj) 

x {(PB)i,j+1/2 - (PU)i,j-1/2} - ui,j(ci,j - uy,j) - ciqj(ci,j - vy,j), 

where Ari and Azj represent the cell size of Y direction and z direction, respectively, 
and At is the time step. The half integer indicates the value on the cell boundary, 
which is calculated by linear interpolation using the value defined on the grid points. 
Here, ti = (u’+ u”)/2 and V = (~7 + v”)/2 are used for pressure work calculation. In 
the second phase, the fluid convections are accomplished with finite-sized particles. 
This part is described in the body of this paper. 
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